Algebraic Hamiltonian actions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Hamiltonian Actions

In this paper we deal with a Hamiltonian action of a reductive algebraic group G on an irreducible normal affine Poisson variety X . We study the quotient morphism μG,X//G : X//G → g//G of the moment map μG,X : X → g. We prove that for a wide class of Hamiltonian actions (including, for example, actions on generically symplectic varieties) all fibers of the morphism μG,X//G have the same dimens...

متن کامل

Combinatorial Invariants of Algebraic Hamiltonian Actions

To any Hamiltonian action of a reductive algebraic group G on a smooth irreducible symplectic variety X we associate certain combinatorial invariants: Cartan space, Weyl group, weight and root lattices. For cotangent bundles these invariants essentially coincide with those arising in the theory of equivarant embeddings. Using our approach we establish some properties of the latter invariants.

متن کامل

Weakly Hamiltonian actions

In this paper we generalize constructions of non-commutative integrable systems to the context of weakly Hamiltonian actions on Poisson manifolds. In particular we prove that abelian weakly Hamiltonian actions on symplectic manifolds split into Hamiltonian and non-Hamiltonian factors, and explore generalizations in the Poisson setting.

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

Induction of Hamiltonian Poisson actions

We propose a Poisson-Lie analog of the symplectic induction procedure, using an appropriate Poisson generalization of the reduction of symplectic manifolds with symmetry. Having as basic tools the equivariant momentum maps of Poisson actions, the double group of a Poisson-Lie group and the reduction of Poisson manifolds with symmetry, we show how one can induce a Poisson action admitting an equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2009

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-009-0587-7